
Efficient Semantic Segmentation using Gradual Grouping

Nikitha Vallurupalli1, Sriharsha Annamaneni1, Girish Varma1,

C V Jawahar1, Manu Mathew2, Soyeb Nagori2

nikitha.vallurupalli@research.iiit.ac.in, sriharsha0806@gmail.com, girish.varma@iiit.ac.in,

jawahar@iiit.ac.in, mathew.manu@ti.com, soyeb@ti.com
.

1
Center for Visual Information Technology, Kohli Center on Intelligent Systems, IIIT-Hyderabad, India

2Texas Instruments, Bangalore, India

Abstract

Deep CNNs for semantic segmentation have high mem-

ory and run time requirements. Various approaches have

been proposed to make CNNs efficient like grouped, shuf-

fled, depth-wise separable convolutions. We study the ef-

fectiveness of these techniques on a real-time semantic

segmentation architecture like ERFNet for improving run-

time by over 5X. We apply these techniques to CNN lay-

ers partially or fully and evaluate the testing accuracies

on Cityscapes dataset. We obtain accuracy vs parame-

ters/FLOPs trade offs, giving accuracy scores for models

that can run under specified runtime budgets.

We further propose a novel training procedure which

starts out with a dense convolution but gradually evolves

towards a grouped convolution. We show that our proposed

training method and efficient architecture design can im-

prove accuracies by over 8% with depthwise separable con-

volutions applied on the encoder of ERFNet and attaching

a light weight decoder. This results in a model which has a

5X improvement in FLOPs while only suffering a 4% degra-

dation in accuracy with respect to ERFNet.

1. Introduction

Semantic segmentation is a critical computer vision

component of autonomous navigation and robotic systems.

It involves dense and high dimensional prediction of a label

for every pixel of an input image. In real world systems,

it also needs to be done on a video stream at high frames

per second, in a power efficient manner. Also there is major

challenge of safety in systems such as autonomous naviga-

tion. Hence for models to be practically applicable, it is es-

sential that they have to be compact, fast as well as achieve

high prediction accuracies.

Deep CNN based models have brought forward a gi-

ant leap in prediction accuracies in semantic segmentation

[5, 13]. However they are computationally expensive and

it is not clear if high accuracy models can be fitted in the

resource constraints set by applications. Hence it has be-

come one of the major challenges in deep learning, to make

these models efficient while maintaining prediction accura-

cies. In the last few years, a new area commonly known

as Model Compression has emerged which aims to address

this challenge.

Initial attempts at model compression were inspired by

matrix compression techniques. DNNs essentially consists

of weight matrices and the obvious ways to make computa-

tions on matrices fast is by making them sparse. Such meth-

ods are commonly known as pruning techniques[9, 12]. An-

other approach is quantization which is to round the weight

matrices (typically floating point arrays) to integer arrays

with lower precision. These methods have significantly re-

duced model sizes, however accuracy degrades at high com-

pression rates [6], which makes training small models bet-

ter. All these methods also require several phases of re-

training so that prediction accuracies can be recovered after

pruning/quantization.

A more recent approach to model compression is to de-

sign the architecture with specific insights about the infor-

mation flow required to give accurate predictions. Efficient

layer designs started with GoogLeNet [20], who proposed

to reduce the input channels to 3x3 convolutions. Xception

[2] took it further by using depth-wise 3x3 separable con-

volutions. Grouped convolutions [21] proposed a simple

way of having structured sparsity in convolutions. Very re-

cently shuffled convolutions [22] have been proposed which

improves upon grouped convolutions by doing a shuffle op-

eration after the grouping.

We study the effectiveness of depthwise separable,

711



Figure 1: Our proposed training procedure for obtaining improved accuracies in grouped convolution based architectures. Crucial obser-

vation is that grouped convolution can be thought of as a dense convolution with many weights being 0 (the blue edges). Note that here

each edge represents a convolutional filter of w × w. In our method, we start with a dense convolution and multiply the blue edges by a

parameter α. We decrease α gradually during training time from 1 and by the end of the training it becomes 0. We also have a fine tuning

phase where α remains 0. Finally at test time, the convolutions can be implemented as a grouped convolution which gives better efficiency.

Since the optimization that is happening at training time is in the higher dimensional space of dense convolutions, we can obtain better

accuracies than traditional training for grouped convolutions.

grouped and shuffled convolutions on a realtime and ef-

ficient semantic segmentation model ERFNet [18]. We

replace the modules in ERFNet with depthwise separable

modules. We experiment with different group number and

shuffle operations. We observe that these methods can re-

duce the FLOPs significantly but incurs as much as 10%

degradation in accuracies (see Section 5.1).

We propose a novel training framework for grouped con-

volutions, called gradual grouping (see Section 5.2). In this

training method, we gradually evolve a dense convolution

toward a grouped convolution. This allows the gradient de-

scent to happen at a higher dimensional model space ini-

tially and gradually evolving towards a lower dimensional

subspace of grouped convolutions. Our approach is inspired

by lifting methods in linear programming where better op-

timization can be done in a higher dimensional representa-

tion.

We use our training procedure to obtain a model which is

only 5.77 GFLOPs (5X improvement over ERFNet which

is 27.7 GFLOPs) with 68% accuracy (4% reduction over

ERFNet which gives 72%) (see Section 5.2). We also find

models which gives 1.5X, 2X reduction in FLOPs with only

0%, 2% reduction in accuracies respectively (see Section

5.3).

2. Related Works

Our work mainly focuses on designing efficient seman-

tic segmentation architectures and training methods that en-

hance the computational efficiency. A substantial amount of

work has been done in comparing our proposed models with

the existing realtime semantic segmentation architectures.

We also discuss about the wide variety of model compres-

sion techniques that have been proposed in the recent years.

2.1. Realtime Semantic Segmentation

Different classes of deep learning based semantic seg-

mentation architectures have been proposed. Most of the

models follow the fully convolutional networks (FCNs) [13]

approach. Early work in designing convolutional neural

networks architecture for semantic segmentation concen-

trated on accuracy (weighted IOU). Most of the semantic

segmentation models follow an Encoder-Decoder type of

architecture. In the encoder part of these networks, the fea-

ture extractors are powerful object detectors like ResNet,

ResNext, etc. PSPNet [24] achieves accuracies above 80%.

However PSPNet [24], runs at more than 100 GFLOPs.

Our work is more focused on obtaining models with < 20

GFLOPs.

More recent works that focus on realtime efficient seg-

mentation are ERFNet [18], ENet [15], ICNet [23], SegNet

basic [1] and Clockwork FCNs [19]. However, all of them

propose architectural modifications. Our work is more fo-

cused on using efficient CNN modules and better training

procedures by keeping the macro architecture the same. In

this paper, we adopt the ERFNet macro architecture and ex-

periment with depthwise separable, grouped and shuffled

convolutions applied to it.

2.2. Model Compression

Model compression refers to the broad set of techniques

that makes models compact. Initial methods proposed in-

clude pruning and quantization techniques [6]. There have

been works which apply these techniques for semantic seg-

mentation [14]. However in [14], the focus was on a coarse

segmentation on only a few classes, while we are attempt-

ing to build efficient models for the Cityscapes benchmark

[3] with all the classes.

Newer approaches to model compression, involves de-

712



signing efficient CNN Modules. GoogleNet [20] proposed

inception modules which decrease the channels to expen-

sive 3x3 convolutions. Xception and MobileNet took this

further to make 3x3 convolutions completely depthwise

separable and sparse. ResNext [21] employed grouped con-

volutions to get efficient models. Shufflenet [22] improved

upon grouped convolutions further by adding a shuffling

layer which helped in better mixing of information across

channels. However these works have mostly focused on the

classification benchmarks like Imagenet [4]. We focus on

applying some of these methods to the task of semantic seg-

mentation, on Cityscapes dataset. We also propose training

methods that work well with grouped convolutions.

2.3. Architecture Search

Very recently there have been works on architecture

search [16, 26, 25] where a separate machine learning al-

gorithm is used to drive a heuristic search procedure to pick

an efficient architecture. However these methods require

large server farms, and has not yet proved its utility for

a dense prediction task like semantic segmentation. Con-

denseNet [8] proposes a simple architecture search proce-

dure integrated with the training of the base network focus-

ing on classification benchmarks. In our work, the architec-

ture is fixed before hand unlike [8]. However we propose

novel training algorithms which give better accuracies for

grouped convolutions.

3. Approach

We propose to obtain extremely efficient semantic seg-

mentation architectures by devising specialized training

techniques for grouped convolutions. We do our experi-

ments on ERFNet [18] which is already an efficient and

realtime model. In Section 3.2, we describe the efficient

CNN layer designs that we use. Finally in Section 3.3, we

describe our novel training procedure.

3.1. ERFNet

ERFNet [18] proposes an efficient convolutional block

as the core of the architecture which achieves state-of-the-

art accuracy on the Cityscape dataset at real time. It was

proposed as an improvement over the ENet [15], which is

highly efficient (runs at < 2GFLOPS), but has low accura-

cies (57% IOUs). ERFNet model obtains 70% accuracy at

27.7 GFLOPs. The ERFNet architecture has an encoder and

decoder parts. ERFNet encoder pretrained on ImageNet [4]

achieves better accuracy on the Cityscapes dataset [3] than

ERFNet trained from scratch. It consists of convolutional

modules which they call Non-bottleneck-1D (see Figure 2),

which uses spatial separability by using an 1× 3 and 3× 1

convolutions.

3.2. Efficient CNNs

3.2.1 Depthwise separable convolutions

Depthwise separable convolutions [17, 2], comprise of a

depthwise convolution performed over each channel of an

input layer and followed by a 1×1 convolution. 1×1 convo-

lution is called pointwise convolution that takes the output

channels from previous step and then combines them into

an output layer. Compared to normal convolution, there is

a reduction in the number of parameters which decreases

the computation required and model size as well. Using

depthwise separable convolution we can reduce the compu-

tational cost by 1/Cout + 1/K2 where Cout is the channel

output size and K is the filter size of the convolution layer

[7].

The reduction in the parameters make separable convo-

lutions quite efficient with improved runtime performance.

They also have the added benefit of reducing over-fitting to

an extent, because of the fewer parameters. Depth wise sep-

arable convolutions are used in models like MobileNet [7],

Xception [2] and ResNeXt [21].

In our proposed convolutional module (see D, in Figure

2), we use depthwise separable convolutions in place of spa-

tially separable convolutions used in Non-bt-1D layer.

3.2.2 Grouped Convolutions

Grouped convolution is another way of building structured

sparse convolutions. Such a convolution with groups pa-

rameter g, decreases the parameter and FLOPs of the layer

by a factor g. Grouped convolutions also help in data band-

width reduction [14], was first implemented by AlexNet

[11]. It has been used for efficient layer design in ResNext

[21]. In our proposed convolutional module (see DGC, in

Figure 2) groups are applied to the 1x1 pointwise convolu-

tions which otherwise consume huge number of parameters

in the network architecture.

3.2.3 Channel Shuffling

If multiple group convolutions are stacked together, outputs

from a certain channel are only derived from a small frac-

tion of input channels. It is clear that outputs from a certain

group only relate to the inputs within the group. This prop-

erty blocks information flow between channel groups and

weakens representation.

By doing grouping in 1x1 point wise convolution, we

could reduce the number of parameters consumed, but

the information flow across groups is blocked. If we al-

low group convolution to obtain input data from different

groups, the input and output channels will be fully related.

Specifically, for the feature map generated from the previ-

ous group layer, we can first divide the channels in each

group into several subgroups, then feed each group in the

713



Figure 2: Different types of layers used in the proposed architecture. Non-bt-1D is the non-bottleneck layer used in ERFNet, D, DGC and

and DGCS are our proposed layer architectures

Figure 3: Grouping and Shuffling

Table 1: Network Architecture with proposed Layers-[D*]

Layer Type out-chann out-Res

E
N

C
O

D
E

R

1 Downsampler block 16 512x256

2 Downsampler block 64 256x128

3-7 5 x Conv-module 64 256x128

8 Downsampler block 128 128x64

9 Conv-module(dilated 2) 128 128x64

10 Conv-module(dilated 4) 128 128x64

11 Conv-module(dilated 8) 128 128x64

12 Conv-module(dilated 16) 128 128x64

13 Conv-module(dilated 2) 128 128x64

14 Conv-module(dilated 4) 128 128x64

15 Conv-module(dilated 8) 128 128x64

16 Conv-module(dilated 16) 128 128x64

D
E

C
O

D
E

R 17 Deconvolution(upsampling) 64 256x128

18-19 2 x Non-bt-1D 64 256x128

20 Deconvolution(upsampling) 16 512x256

21-22 2 x Non-bt-1D 16 512x256

23 Deconvolution(upsampling) C 1024x512

next layer with different subgroups. This can be efficiently

implemented by a channel shuffle operation [22]. Channel

shuffling operation enables cross-group information flow

for multiple group convolutions. In our proposed layer ar-

chitecture (see DGCS, in Figure 2), we do a channel shuffle

operation after a grouped 1x1 point wise convolution before

passing information to the next convolution block.

3.3. Gradual Training of Grouped Convolutions

We propose a novel training procedure with special fo-

cus on grouped convolutions, which can improve the accu-

racies (see Figure 1). We first observe that grouped con-

volution can be thought of as a dense convolutions with

certain weights zeroed out. Hence the space of a grouped

convolutions is nothing but a linear subspace of dense con-

volutions. Traditional training procedures starts out with a

grouped convolution model, and hence the gradient descent

optimization will only happen in the low dimensional sub-

space of grouped convolutions. It is a well known result

in linear programming lifting that optimization in a higher

dimensional space can often lead to convergence towards

better minima.

We propose a training procedure where the train time op-

timization happens in the higher dimensional space of dense

convolutions and gradually evolves toward a grouped con-

volutions. In this proposed training procedure, the network

starts out as a model with no groups which is equivalent to

saying that the total number of groups is equal to one and

gradually evolves to model with number of groups equal to

2. In this process of training, the dense connections which

we had initially gradually reduce to sparse group connec-

tions. At the time of test, the model has connections only

714



within groups and can be implemented as grouped convolu-

tion. This reduces the number of FLOP’s significantly at the

time of validation and testing and we see that there is no ac-

curacy drop, as the group size increases which also signifies

that accuracy is not degrading as the model size decreases.

4. Experimental Details

4.1. Network Configuration

The basic segmentation architecture is inspired from

ERF Net, considering the balance between FLOP count and

accuracy. In the proposed architecture (see Table 1), we

change the encoder completely by replacing each Non-bt-

1D layer with our proposed convolutional layers and this

architecture is named - [D*]. When the Conv-module (see

Table 1) is configured with DGC architecture (see Fig 2),

it is named [DG(C)*] where C is the value of number of

groups.

If Conv-module has DGCS architecture (see Fig 2), then

the network is named [DG(C)S*] where C indicates the

number of groups and S indicates that a shuffle operation

is being done. More detailed architecture of this network

describing all the layers is seen in Table 2. All the results

are reported and compared using this nomenclature.

Table 2: Selective Application of proposed Layers in the Network

Architecture -[D]

Layer Type out-chann out-Res

E
N

C
O

D
E

R

1 Downsampler block 16 512x256

2 Downsampler block 64 256x128

3-5 3 x Non-bt-1D 128 128x64

5-7 2 x Conv-module 64 256x128

8 Downsampler block 128 128x64

9 Non-bt-1D(dilated 2) 128 128x64

10 Non-bt-1D(dilated 4) 128 128x64

11 Non-bt-1D(dilated 8) 128 128x64

12 Non-bt-1D(dilated 16) 128 128x64

13 Conv-module(dilated 2) 128 128x64

14 Conv-module(dilated 4) 128 128x64

15 Conv-module(dilated 8) 128 128x64

16 Conv-module(dilated 16) 128 128x64

D
E

C
O

D
E

R 17 Deconvolution(upsampling) 64 256x128

18-19 2 x Non-bt-1D 64 256x128

20 Deconvolution(upsampling) 16 512x256

21-22 2 x Non-bt-1D 16 512x256

23 Deconvolution(upsampling) C 1024x512

We come up with another Network Architecture (see

Table 2) based on Selective Application of proposed lay-

ers. As discussed earlier, in D* Networks, all the layers

are changed which results in an accuracy drop. From con-

ventional model compression techniques like pruning and

quantization, we adapt the thought to apply compression

techniques only to the later layers in the network. In this

network architecture, namely-[D] (see Table 2), we apply

our proposed Conv-module layers selectively, leaving few

initial layers after Downsampler block. When the Conv-

module layer is configured with DGC (see Fig 2), network is

named [DG(C)] where is C is the number of groups. When

a channel shuffle layer is used in between grouped convolu-

tions, we call the network [DG(C)S]. Dilation is used in the

layers to gather more context information[18]. Downsam-

pler block architecture(see Table 2) includes deconvolution

layers with stride 2, which is the same as transposed con-

volutions. Deconvolutions simplify memory and computa-

tion requirements, unlike max-unpooling operation as shar-

ing the pooling indices from the encoder is not required.

We use a small decoder to reduce the number of parame-

ters, whose purpose is to upsample the encoders output by

fine-tuning the details[18].

4.2. Experimental Setup

We use Cityscapes Dataset [3] in all our experiments. It

is a challenging dataset with 19 labeled classes. It contains

a train set of 2975 images, a validation set of 500 images

and a test set of 1525 images. All the models are trained

only using the train set. To access the performance of the

architecture we use Intersection over Union (IoU) scores as

accuracy metric. We report meanIoU, which is the valida-

tion accuracy on all the 19 classes. During the time of test

and validation, image is sub sampled by a factor of 2 to re-

port meanIoU.

All the proposed network architectures (see Sec 4.1),

namely D*, DG*, D(G)S* (see Table 1), D, DG and D(G)S

(see Table 2) are trained from scratch on cityscapes dataset.

All the experiments are done in pytorch with CUDA 9.0

and CUDNN back ends. Adam optimizer [10] of stochastic

gradient decent is used for training. Training is done with

a batch size that is inversely proportional to the size of the

proposed compressed models. We start with a learning rate

of 5∗e−04, and a learning rate scheduler is used to decrease

the learning rate, so that the convergence is accelerated.

4.3. Training Procedure for gradual grouping

In the proposed training procedure, a D (see Table 2) ,

D* encoder model (see Table 1) evolves to a DG, DG* en-

coder model (see Sec 4.1) respectively. G is the targeted

number of groups. In this process, the encoder and decoder

are trained in two phases. The meanIoU value is calculated

only after the model settles to a DG, DG* model respec-

tively. The training is done using a controllable parameter

alpha. As the value of alpha changes with increasing num-

ber of epochs, the connections become sparse (see Fig 1).

When the value of alpha is 1, it is a D, D* (see Sec 4.1)

model respectively.

In the initial epochs, alpha gradually decrements from

1 to 0. When alpha value becomes zero, it is DG, DG*

model respectively (see Sec 4.1). D, D* model evolves to a

DG, DG* encoder model where G is the targeted number of

715



groups. In the last few epochs, the model is fine-tuned keep-

ing alpha value zero and the model converges. As the group-

ing techniques are applied only in the encoder,the control-

lable parameter alpha is used only in training the encoder.

Using these pretrained encoder weights, the encoder de-

coder architecture is trained. We remove the last layer from

the encoder and attach the decoder in order to train the full

network. Now, since the encoder model uses pretrained

gradual grouping weights, the encoder is well initialized

but decoder weights are not trained. When the encoder is

trained again along with decoder, the initialization gained

through gradual grouping is lost. To overcome this, we al-

most freeze the encoder which is equivalent to giving a very

less learning rate of 5 ∗ e−20 to the encoder for few initial

epochs. Whereas the decoder will have a learning rate of

5∗e−04 in the initial epochs. In the later epochs, the encoder

and decoder start training together with the same learning

rate of 5 ∗ e−04. The proposed novel training procedure can

be easily implemented, which specifically targets grouped

convolutions.

5. Results

Our main result is to obtain a semantic segmentation

model with 5.8 GFLOPs running time with IOU scores of

68%. Our baseline model is ERFNet which is a realtime

semantic segmentation model and our method gives a 5X

reduction in FLOPs with only 4% degradation in accuracy.

All the accuracies reported is by the same procedure, where

ground truths are sub sampled to half the resolution, and

compared with the predictions 1.

Our approach is to first apply depthwise separable layers

along with grouping and shuffling operations on the entire

ERFNet architecture to reduce the GFLOPs significantly

(see Section 5.1). However this process degrades the accu-

racy also significantly, by over 10%. We propose a special

training procedure called gradual grouping where the accu-

racy degradation is reduced resulting in a compact network

with 6X reduction in runtime and 66% IOUs (see Section

5.2). We also apply grouping and shuffling operations se-

lectively to layers of the ERFNet architecture, resulting in

models with accuracies similar to the baseline with better

FLOPs/parameter tradeoffs (see Section 5.3).

5.1. Comparison with Depthwise separable, Groups
and Shuffle Layers

We study the effect of various efficient CNN designs on

the ERFNet architecture for semantic segmentation. First,

we replace the spatially separable modules in ERFNet by an

equivalent depthwise separable convolution modules (see

Figure 2), in most of the layers (see Table 2) resulting in

1We do evaluation with ground truths sub sampled by factor 2. This

was done due the limitation of the number of GPU’s available.

Table 3: Depthwise Separable Convolution, Groups and Shuffle

on ERFNet Architecture

Models IOU Params GFLOPs

ERFNet 70.45 2038448 27.705

D* 68.55 547120 10.597

DG2* 65.35 395568 8.852

DG4* 61.42 319792 7.980

DG8* 59.15 281904 7.543

DG2S* 65.36 395568 8.852

DG4S* 61.27 319792 7.980

DG8S* 59.89 281904 7.543

the model D*. As can be seen in Table 3, this reduces the

FLOPs by almost 3X with an accuracy degradation of 2%,

which is quite good.

We further use grouped convolutions for decreasing the

FLOPs. Since most of the parameters in the depthwise sep-

arable convolutions are in the 1x1 point-wise convolutions,

we use the grouping only on the 1x1 convolutions. This re-

sults in the models DG2*, DG4*, DG8* with group sizes

2, 4 and 8 respectively. These models are sufficiently com-

pressed in terms of FLOPs with the DG8* model being only

7.5 GFLOPs. However the accuracy degradation is over

10% which is likely to be unacceptable.

Shuffled convolutions was proposed to improve the ac-

curacies of grouped convolutions. They have the same pa-

rameters and FLOPs as grouped convolutions, since shuffle

operation is essentially just a rearranging of the channels.

The models DGCS* (where C=2,4,8) are also mentioned

in Table 3. But we observe, that shuffling operation is not

affecting the accuracy in our case.

5.2. Training using Gradual Grouping

As seen in Section 5.1, grouped convolutions can sig-

nificantly reduce the FLOPs, but incur an unacceptable re-

duction in accuracy. We propose a novel training procedure

which starts with a full dense model and gradually evolves

toward a model with larger group size.

We further try to reduce the number of FLOPs by attach-

ing a light weight decoder to the existing encoder model

which we proposed. We compress the decoder further by

changing the 3x3 deconvolution (upsampling) operation to

1x1 upsampling and also changing the Non-bt-1D layers to

Conv-module layers (see Table 1). We train our proposed

encoder using gradual grouping on Imagenet dataset and

then attach the proposed light weight decoder to it.

The results of the gradual grouping training is given in

Table 4. As it can be seen, the FLOPs vs accuracy trade-

off has decreased significantly with our proposed method

on the modified architecture. Specifically the DGC* mod-

els when trained with gradual grouping gives a significant

improvement in accuracy over the normal training. Our pro-

716



Figure 4: Performance trade off graph for all the models studied. Note that the blue points representing models trained by gradual grouping

gives the best performance tradeoffs. Also the selective application of groups (green points) hardly degrades the accuracy while still giving

a reasonable reduction in GFLOP of 1.5X over the baseline ERFNet which runs at 27.7 GFLOPs.

posed model is giving accuracies of 68% (4% reduction

from baseline ERFNet) while having only 5.77 GFLOPs

(5X reduction in FLOPs).

Table 4: Gradual Training of Grouped Convolutions. As can be

seen, our proposed models are having FLOPs ranging from 5.77

GFLOPs to 3.15 GFLOPs while the best accuracy is around 68%.

Improvement in accuracy is seen due to gradual training from the

traditional training method (reported in Table 3)

Models IOU Params GFLOPs

ERFNet-pretrained 72.10 2038448 27.705

D*-proposed 68.39 431312 5.773

DG2*-proposed 66.10 279760 4.029

DG4*-proposed 63.80 203984 3.156

5.3. Selective Application of Groups

We further experiment with models where we selec-

tively replace some 1x1 convolutions in the D* model with

grouped and shuffled convolutions. The specific layers that

are replaced is given in Table 2. The results of these ex-

periments are given in Table 5. The models DGC’s refer

to models were groups = C is used for selected 1x1 con-

volutions. We also did experiments with the correspond-

ing shuffle convolution versions also. We observe that the

model DG2S without decoder incurs only a 1% reduction in

accuracy while giving a 2X improvement in FLOPs. Also

the model DG2S gives a 1.5X improvement in FLOPs with-

out incurring any loss in accuracy.

Table 5: Selective Application of Depthwise separable convolu-

tions, Grouping and Shuffling

Models IOU Params GFlops

D 69.26 1291648 19.025

DG2 69.71 1238960 18.998

DG4 68.98 1202096 18.595

DG8 69.57 1183664 18.394

DG2S 70.62 1238960 18.998

DG4S 69.59 1202096 18.595

DG8S 69.57 1183664 18.394

6. Conclusion

We approach the problem of designing extremely effi-

cient CNNs for semantic segmentation specifically focus-

ing on autonomous navigation. For this purpose we study

the ERFNet model which is already among the most effi-

cient, realtime models on the Cityscapes dataset. We first

do a thorough benchmarking of ERFNet using the recent

advances in efficient CNNs. We experiment with depthwise

separable, grouped and shuffled convolutions. We observe

that grouped convolutions along with depthwise separable

convolutions can bring down the running time significantly,

but results in over 10% accuracy degradation.

717



Figure 5: Qualitative examples of the Validation set and their segmented output from our model DG4*

We propose a novel training procedure which can be eas-

ily implemented, which specifically targets grouped convo-

lutions. The procedure starts with dense convolutions and

gradually evolves toward grouped convolutions as the train-

ing progresses, allowing the optimization to be done at a

higher dimensional space. We empirically show that this

procedure on our proposed efficient architecture results in a

model at run at 5.77 GFLOPs while giving reasonable ac-

curacies.

References

[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Seg-

net: A deep convolutional encoder-decoder archi-

tecture for image segmentation. IEEE transac-

tions on pattern analysis and machine intelligence,

39(12):2481–2495, 2017.

[2] F. Chollet. Xception: Deep learning with depthwise

separable convolutions. CVPR, 2017.

[3] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. En-

718



zweiler, R. Benenson, U. Franke, S. Roth, and

B. Schiele. The cityscapes dataset for semantic urban

scene understanding. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition,

pages 3213–3223, 2016.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and

L. Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In Computer Vision and Pattern Recog-

nition, 2009. CVPR 2009. IEEE Conference on, pages

248–255. IEEE, 2009.

[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and

semantic segmentation. In Proceedings of the IEEE

conference on computer vision and pattern recogni-

tion, pages 580–587, 2014.

[6] S. Han, H. Mao, and W. J. Dally. Deep compres-

sion: Compressing deep neural networks with prun-

ing, trained quantization and huffman coding. In-

ternational Conference on Learning Representations

(ICLR), 2016.

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,

W. Wang, T. Weyand, M. Andreetto, and H. Adam.

Mobilenets: Efficient convolutional neural networks

for mobile vision applications. arXiv preprint

arXiv:1704.04861, 2017.

[8] G. Huang, S. Liu, L. van der Maaten, and K. Q.

Weinberger. Condensenet: An efficient densenet

using learned group convolutions. arXiv preprint

arXiv:1711.09224, 2017.

[9] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speed-

ing up convolutional neural networks with low rank

expansions. arXiv preprint arXiv:1405.3866, 2014.

[10] D. P. Kingma and J. Ba. Adam: A method for stochas-

tic optimization. arXiv preprint arXiv:1412.6980,

2014.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-

agenet classification with deep convolutional neural

networks. In Advances in neural information process-

ing systems, pages 1097–1105, 2012.

[12] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets,

and V. Lempitsky. Speeding-up convolutional neural

networks using fine-tuned cp-decomposition. arXiv

preprint arXiv:1412.6553, 2014.

[13] J. Long, E. Shelhamer, and T. Darrell. Fully convo-

lutional networks for semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision

and pattern recognition, pages 3431–3440, 2015.

[14] M. Mathew, K. Desappan, P. K. Swami, and S. Nagori.

Sparse, quantized, full frame cnn for low power

embedded devices. In 2017 IEEE Conference on

Computer Vision and Pattern Recognition Workshops

(CVPRW), pages 328–336, July 2017.

[15] A. Paszke, A. Chaurasia, S. Kim, and E. Culur-

ciello. Enet: A deep neural network architecture

for real-time semantic segmentation. arXiv preprint

arXiv:1606.02147, 2016.

[16] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean.

Efficient neural architecture search via parameter shar-

ing. arXiv preprint arXiv:1802.03268, 2018.

[17] R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua.

Learning separable filters. In 2013 IEEE Conference

on Computer Vision and Pattern Recognition, pages

2754–2761, June 2013.

[18] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Ar-

royo. Erfnet: Efficient residual factorized convnet for

real-time semantic segmentation. IEEE Transactions

on Intelligent Transportation Systems, 19(1):263–272,

2018.

[19] E. Shelhamer, K. Rakelly, J. Hoffman, and T. Darrell.

Clockwork convnets for video semantic segmentation.

In European Conference on Computer Vision, pages

852–868. Springer, 2016.

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-

novich. Going deeper with convolutions. In CVPR,

pages 1–9, June 2015.

[21] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He.

Aggregated residual transformations for deep neural

networks. In Computer Vision and Pattern Recogni-

tion (CVPR), 2017 IEEE Conference on, pages 5987–

5995. IEEE, 2017.

[22] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet:

An extremely efficient convolutional neural network

for mobile devices. arXiv preprint arXiv:1707.01083,

2017.

[23] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia. Icnet for

real-time semantic segmentation on high-resolution

images. arXiv preprint arXiv:1704.08545, 2017.

[24] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid

scene parsing network. In IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), pages 2881–

2890, 2017.

[25] B. Zoph and Q. V. Le. Neural architecture

search with reinforcement learning. arXiv preprint

arXiv:1611.01578, 2016.

[26] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le.

Learning transferable architectures for scalable image

recognition. arXiv preprint arXiv:1707.07012, 2017.

719


